United States Patent

US009483576B2

(12) (10) Patent No.: US 9,483,576 B2
Belinsky et al. 45) Date of Patent: Nov. 1, 2016
(54) OFFLINE APPLICATION SUPPORT 2009/0063590 Al* 3/2009 Yuval et al. 707/205
2009/0228545 Al* 9/2009 Mc?ndez et al. . .. 709/202
(75) Inventors: Ofer Belinsky, Yehud (IL); Nadav 2011/0078322 A1* 3/2011 Shin et al. .o 709/230
Greenberg, Yehud (IL); Yaniv 2011/0283359 A1* 11/2011 Prince et al. HOAL 67/146
Shachar, Yehud (IL); Alon Mei-Raz, 726123
Yehud (IL)
OTHER PUBLICATIONS
(73) Assignee: Hewlett Packard Enterprise
Development LP, Houston, TX (US) James Pearce, Taking Sencha Touch Apps Offline, Aug. 16, 2011.*
Pearce, J., Taking Sencha Touch Apps Offline, Apr. 22, 2011, 27
(*) Notice: Subject to any disclaimer, the term of this ~ pages, http//www.sencha.com/learn/taking-sencha-touch-apps-of-
patent is extended or adjusted under 35 fline.
U.S.C. 154(b) by 443 days. Raad, M., Thunderhead Explorer, Apr. 22, 2011, 4 pages, http://
thunderheadxpler.blogspot.in/2011/10/map-tiles-for-offline-usage-
(21) Appl. No.: 13/597,638 using html.
(22) Filed: Aug. 29, 2012 * cited by examiner
(65) Prior Publication Data Primary Examiner — Alex Gofman
US 2014/0067849 Al Mar. 6, 2014 (74) Attorney, Agent, or Firm — Hewlett Packard
Enterprise Development LP
(51) Imt. ClL
GO6F 17/30 (2006.01) (57) ABSTRACT
Goor 15/16 (2006.01) An offline support system operates to record a plurality of
(52) US. L request/response pairs exchanged between an application
C.PC o — GO6F 17/30902 (2013.01) and a web service. The system determines if a current
(58) Field of Classification Search request from the application can be communicated to the
USPC s - 707/769 web service. Upon a positive determination, the current
See application file for complete search history. request is passed to the web service. Upon a negative
. determination, a most recent recorded request/response pair
(56) References Cited having a request matching the current request is identified.
U.S. PATENT DOCUMENTS The response from the identified pair is passed to the
application as if it were a response to the current request.
6,604,143 B1* 8/2003 Nagar et al. 709/229
8,484,314 B2* 7/2013 Lunaetal.c........ 709/217 17 Claims, 3 Drawing Sheets
48
\\" MAINTAIN A REPOSITORY OF REQUEST/RESPONSE PAIRS
EXCHANGED BETWEEN A MOBILE APPLICATION AND AWEB SERVICE
50 UPCN A DETERMINATION THAT A CURRENT REQUEST FROM THE MOBILE APPLICATION
\\._ CANNCT BE COMMUNICATED TO THE WEB SERVICE, OBTAIN
A PRICR RESPONSE FROM A PAIR INTHE REPOSITORY
52\\‘ PASS THE PRIOR RESPONSE TO THE MOBILE APPLICATION AS IF [TWERE
A RESPONSE FROM THE CURRENT REQUEST RETURNED FROMTHE WEB SERVICE

U.S. Patent Nov. 1, 2016 Sheet 1 of 3 US 9,483,576 B2

14
.
H
10 W
WEB SERVER
ff 16 f 18
]]
APPLICATION DATABASE
SERVER SERVER

5 12
f
OFFLINE | 24
SUPPORT
SYSTEM
MORLE | %
APPLICATION
MOBILE DEVICE

FiG. 1

U.S. Patent

US 9,483,576 B2

Nov. 1, 2016 Sheet 2 of 3
!, 38 24
24 Ty (
_ .| PROCESSING
o 2] ; RESQURCE 36
26 RECORD zf\ ; f
. ENGINE !
MOBILE i
| APPLICATION ; MEMORY RESOURCE
28 STATUS | - -
. ENGINE 40
\i RECORD MODULE i
a4 42\“
30 INTERFACE . E STATUS MODULE z
*n ENGINE
ENGINE REPOSITORY 44
- ‘\i INTERFACE MODULE {
32 EXCEPTION 46
e ENGINE \~| EXCEPTION MODULE {
FIG. 2 22
MOB{LE APPLICATION
FIG. 3
48
. MAINTAIN A REPOSITORY OF REQUEST/RESPONSE PAIRS
EXCHANGED BETWEEN A MOBILE APPLICATION AND A WEB SERVICE
5o | UPON ADETERMINATION THAT A CURRENT REQUEST FROM THE MOBILE APPLICATION
N CANNOT BE COMMUNICATED TO THE WEB SERVICE, GBTAIN
A PRIOR RESPONSE FROM A PAIR IN THE REPOSITORY
52\& PASS THE PRIOR RESPONSE TO THE MOBILE APPLICATION AS iF [T WERE

ARESPONSE FROMTHE CURRENT REQUEST RETURNED FROM THE WEB SERVICE

FIG. 4

US 9,483,576 B2

Sheet 3 of 3

Nov. 1, 2016

U.S. Patent

24

N

e
S
e
xl &~ --- - -7 "" y A
i
(%)
[a
<
A8 2 Ny
ol=gyr -7 U Y
had (o5
z
oy
= =
\\qu EEEEE wme e e o s vem e e mens e o e el
102
S Fol)
o) ™ ©
5/ N 7/
w
O
< Z
P 1 e e b e e wn o o [o o o
il
o = &
@Az ™
f, fox)
\\DE ©
&z
8185 --- -1 R PO [2 S
co © " <
s ~
7o)
\\Umlii*l@r?li.:l.i ﬁhi!!i%!@iuw
4|22 |
R rf
i
- i
" S L © -
L.
&
=

/38

FIG. 5

US 9,483,576 B2

1
OFFLINE APPLICATION SUPPORT

BACKGROUND

Mobile devices such as smartphones and tablets have
become highly popular computing platforms providing con-
siderable computing capabilities. Many mobile applications
rely on wireless network connections for accessing data
from an application server. Wireless data connections
become unavailable for any number of reasons and prevent
timely access to important information. For example, the
mobile device may be out of signal range or the user may
intentionally place the device in an offline or “airplane”
mode.

DRAWINGS

FIG. 1 depicts an environment in which various examples
may be implemented.

FIGS. 2 and 3 depict physical and logical components for
implementing an offline application support system accord-
ing to an example.

FIG. 4 is a flow diagram depicting steps taken to imple-
ment an example.

FIG. 5 is a sequence diagram illustrating steps taken to
implement an example.

DETAILED DESCRIPTION
Introduction

Mobile applications installed and executing on a mobile
computing device such as a smartphone or tablet often rely
on the existence of a wireless data connection between the
mobile device and a web service. When that connection is
not available, the user can be left without access to important
information. Various embodiments described below were
developed to improve the user experience with such appli-
cations in situations when a stable data connection cannot be
counted on.

An offline support system operates on a user’s mobile
device and sits between the mobile application and the
device’s data communication feature. The data communica-
tion feature includes the programming and hardware used by
the device to transmit and receive data communications. The
system maintains a repository by recording interactions
between the application and a web service that pass through
that data communication feature. Those interactions can be
segmented into request/response pairs.

The system, upon a determination that a current request
from the application cannot be communicated to a given
web service, the system turns to the repository. In particular,
the system uses the current request to query the repository
for a most recent request/response pair having a request that
matches the current request. That pair will have a prior
response returned from the web service to the mobile
application in response to the matching prior request. The
system then returns the prior response to the mobile appli-
cation as if it were a response to the current request. In this
fashion, the offline support system allows use of the mobile
application regardless of whether or not a data connection is
available.

The following description is broken into sections. The
first, labeled “Environment,” describes an environment in
which various embodiments may be implemented. The
second section, labeled “Components,” describes examples
of various physical and logical components for implement-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing various embodiments. The third section, labeled as
“Operation,” describes steps taken to implement various
embodiments.

Environment:

FIG. 1 depicts an environment 5 in which various embodi-
ments, discussed below, may be implemented. Environment
5 includes mobile device 12 in communication with web
service 10 made up of web server, 14, application server 16,
and database server 18. Mobile device 12 represents gener-
ally any computing device capable of interacting with a web
service via a wireless data connection. Examples include,
but are not limited to, smart phones, tablets, and notebook
computers.

Web server 14 represents generally any computing device
configured to receive requests and return responses to
mobile device 12. In performing this task, web server 14
passes the request to application server 16. Application
server 16 represents generally any computing device con-
figured to act on a request from mobile device 12. Such
action can include assembling a response to the request. The
response may, for example be assembled from data obtained
from database server 18. Thus, application server 16, may
process a request, and query database server 18. Data base
server 18 represents generally any computing device con-
figured to receive and respond to database queries. Ulti-
mately, application server 16 delivers an assembled response
to web server 14 to be returned to mobile device 12.

Components 12-18 are shown being connected via link
20. Link 20 represents generally one or more of a cable,
wireless, fiber optic, or remote connections via a telecom-
munication link, an infrared link, a radio frequency link, or
any other connectors or systems that provide electronic
communication. It is expected that at least the portion of link
connecting mobile device 12 is a wireless connection. Link
20 may include, at least in part, an intranet, the Internet, or
a combination of both. Link 20 may also include interme-
diate proxies, routers, switches, load balancers, and the like.

Mobile device 12 is shown to include mobile application
22 and offline support system 24. Mobile application 22
represents generally any application installed on mobile
device that when executed is configured to cause mobile
device 12 to interact with web service 10. Such interactions
include communicating requests with the expectations of
responses to be returned from web service 10. The foregoing
high level discussion of servers 14-18 and link 20 reveal the
importance of link 20 to mobile device 12. If any portion of
link 20 fails, mobile application 22 may be prevented from
obtaining requested data because the request cannot be
delivered, the response cannot be returned, or both. Dis-
cussed in more detailed below, offline support system 24
represents generally any combination of hardware and pro-
gramming configured to provide mobile application 22 with
a response when link 20 fails or is otherwise not available.

Components:

FIG. 2 depicts an example of physical and logical com-
ponents for implementing offline support system 24. In FIG.
2, components are identified as engines. In describing the
engines below, focus will be on each engine’s designated
function. However, the term engine, as used herein, refers to
a combination of hardware and programming configured to
perform a designated function. As is illustrated later with
respect to FIG. 3, the hardware of each engine, for example,
may include a processor and a memory, while the program-
ming is code stored on that memory and executable by the
processor to perform the designated function.

In FIG. 2, offline support system 24 is shown to include
record engine 26, status engine 28, interface engine 30, and

US 9,483,576 B2

3

exception engine 32. Also depicted are mobile application
22 and repository 34. Repository 34 represents any memory
capable of use in recording communications between mobile
application and a web service such as web service 10 of FIG.
1. Record engine 26 is configured to record a plurality of
request/response pairs exchanged between mobile applica-
tion 22 applications and a web service. In doing so, record
engine 26 is responsible for maintaining repository 34. As
noted above, mobile application 22 and a web service
communicate via requests and responses. A request, for
example, is a network communication and may take the
form of an HTTP GET operation for retrieving data. A
response is a network communication assembled to respond
to the request. Thus, the communication between mobile
application 22 and the web service can be segmented into
corresponding request/response pairs. Record engine 26 is
then responsible for matching each response returned from
the web service to its corresponding request and adding the
resulting pair to repository 34.

Status engine 28 is configured to determine if a current
request from mobile application 22 can be communicated
from to a web service. Such a determination may be made
in a number of manners. For example, status engine 28 may
communicate with the operating system or other application
on the mobile device to learn if the device has a data
connection to a service provider. In some cases, the mobile
device may be out of communication range. In other cases,
the data connection may have been manually disabled such
as when the mobile device on which application 24 is
executing has been place in airplane mode.

Upon a negative determination, status engine 28 is
responsible for obtaining a previously recorded response to
a prior request matching the current request. Here, status
engine 28 may use the current request as a key to query
repository 34 to identify a request/response pair having a
request matching the current request. That identified pair
may be the most recently recorded pair having a matching
request. In one example, the requests may match if they are
directed to identical network addresses. As used here, a
network address may be a Uniform Resource Identifier
(URI) that identifies the address of the web service as well
as the information being requested. With a request response/
pair identified, status engine 28 then returns the response
from that pair to mobile application 22 as if it were a
response to the current request. Thus, rather than a response
to the current request, status engine 28 passes a prior
response to a previous request as if it were a response to the
current request received from the web service. In other
words, mobile application 22 treats the prior response as if
it were returned from the web service in response to the
current request.

A response obtained and returned from repository 34 may
not include up to date information. Interface engine 30 is
configured to cause the mobile device to display an indicator
when status engine 28 upon a determination that the current
request cannot be communicated to the web service. The
indicator can be any visual indication that the mobile device
22 does not have a data connection that allows direct
interaction with the web service. For example, the indicator
may be text, an icon, or a color bar layered on top of the
mobile application’s graphical user interface. The indicator
informs the user that the information being presented by
mobile application 22 may not be up to dare. Here, that
information corresponds to the prior response returned by
status engine 28.

Situations may arise when an application developer would
not want a prior response to be returned when a data

10

15

20

25

30

35

40

45

50

55

60

65

4

connection is not available. Such may be the case when
critical information is being continually updated at the web
service. Exception engine 32 is configured to take an action
with response to a current request that does not include
passing a prior response to the mobile application. Such an
action can include allowing the current request to time out
or causing a display of an indicator that a requested opera-
tion is not available when the mobile device is offline. Here
status engine 28 may be configured to determine if a current
request includes an exception indicator. An exception indi-
cator is any data in the request that indicates a prior request
is not to be returned to mobile application 22. In one
example, an exception indicator may be a flag set in the
request. In another example, an exception indicator may be
implied by the type of request—for example an HTTP POST
operation. If the current request cannot be delivered to the
web service, and an exception indicator is identified, status
engine 28 passes the current request to exception engine 32.

In foregoing discussion various engines were described as
combinations of hardware and programming configured to
perform a given function. Such engines may be imple-
mented in a number of fashions. Looking at FIG. 3, the
programming may be processor executable instructions
stored on tangible memory resources 36 while the hardware
may include a one or both of memory resource 36 and
processing resource 38. Memory resource 36 represents
generally any number of memory components capable of
storing instructions that can be executed by processing
resource 38. Memory resource 36 may be integrated in a
single device or distributed across devices. Likewise pro-
cessing resource 38 represents any number of processors
capable of executing instructions stored by memory resource
36. Processing resource 38 may be integrated in a single
device or distributed across devices. Further, memory
resource 36 may be fully or partially integrated in the same
device as processing resource 38 or it may be separate but
accessible to that device and processing resource 38. Thus,
it is noted that system 24 may be implemented completely
or partially by a mobile device.

Thus, in one example, memory resource 36 can be said to
store program instructions that together with processor
resource 38 implement application system 24 of FIG. 2.
Furthermore, the program instructions can be part of an
installation package that when installed can be executed by
processing resource 38 to implement application system 24.
In this case, the memory resource storing the installation
package may be a portable medium such as a CD, DVD, or
flash drive or a memory maintained by a server from which
the installation package can be downloaded and installed.

Continuing with FIG. 3, memory resource 36 is shown to
include record module 40, status module 42, interface mod-
ule 44, and exception module 46. Record module 40 repre-
sents program instructions that, when executed, cause pro-
cessing resource 38 to implement record engine 26 of FIG.
2. Status module 42 represents program instructions that
when executed cause the implementation of status engine
28. Interface module 44 represents program instructions that
when executed cause the implementation of interface engine
30, and exception module 46 represents program instruc-
tions that when executed cause the implementation of status
exception engine 32.

While in FIG. 3, modules 40-46 are depicted separate
from mobile application 22, modules 40-46 may be inte-
grated into mobile application 22. In other implementations,
modules 40-42 may be integrated into an operating system
or may form a separate standalone program.

Operation:

US 9,483,576 B2

5

FIG. 4 is a flow diagram of steps taken to implement an
offline application support method. In discussing FIG. 4,
reference may be made to the diagrams of FIGS. 1-3 to
provide contextual examples. Implementation, however, is
not limited to those examples. Starting with step 48, a
repository maintained. The repository includes a plurality of
request/response pairs exchanged between a mobile appli-
cations and a web service. Where, for example, a determi-
nation is made that the current request can be communicated
to the web service, the repository may be updated to include
that request and its corresponding response returned from
the web service. Referring to FIG. 2, record engine 26 may
be responsible for implementing step 48.

Upon a determination that a current request from the
mobile application cannot be communicated to the web
service, a prior response is obtained from a pair in the
repository (step 50). That pair includes a prior request
matching the current request. The prior response obtained
from the repository is passed to the mobile application as if
it were a response from the current request returned from the
web service (step 52). Again referring to FIG. 2, status
engine 28 may be responsible for implementing steps 50 and
52.

The method depicted in FIG. 4 may be expanded to
include causing a display that indicates information being
presented by the mobile application may not be current.
Such would occur only upon a positive determination in step
50. This information being displayed corresponds to the
prior response passed to the mobile application in step 52.
Likewise, the method can include causing a display that
indicates that the information is current. Here the informa-
tion corresponds to a current response received from the web
service. Referring to FIG. 2, interface engine 30 may be
responsible for causing such a display by, for example,
causing text, a color bar, or an icon to overlay the user
interface being displayed by the mobile application.

The method depicted in FIG. 4 may be expanded to
include examining the current request for an exception
indicator. Upon the determination that a current request from
the mobile application cannot be communicated to the web
service, The current request may be passed to an exception
handler rather than obtaining and passing the prior response
to the mobile application. An exception handler is a program
configured to take an action with respect to the current
request that does not include passing a prior response to the
mobile application. Referring to FIG. 3, exception module
46 may serve as an exception handler.

To summarize and provide a contextual overview, FIG. 5
is a sequence diagram illustrating steps taken by the com-
ponents of environment 5 in FIG. 1 to provide offline
support for a mobile application. To start, in this example,
mobile application 22 communicates a current request
directed to web service 10 (step 54). Status engine 28
intercepts or otherwise obtains the request and determines if
the request can be communicated to web service 10 (step
56). Upon a positive determination, the current request is
allowed to pass to web service or otherwise not interfered
with (step 58). Web service processes the request (step 60)
and returns a response that, passing through status engine
(step 32), reaches mobile application (step 64). Status engine
28 then communicates copies of the current request and its
response to record engine 26 (step 66). Record engine 26
assembles a request/response pair (step 68) and updates
repository 30 (step 70).

Later, mobile application 22 communicates another
request directed to web service 10 (step 72). Again, status
engine 28 intercepts or otherwise obtains that subsequent

25

40

45

50

55

6

request and determines if the request can be communicated
to web service 10 (step 74). Here, a data connection is not
available, so status engine 28 uses the request as a key for
querying repository 34. As a result, status engine 28 obtains
a prior response returned from web service 10 in response to
a prior matching request (step 76). Status engine 28 then
passes that prior response to mobile application 22 as if it
were a response received from web service 10 returned in
response to the request of step 72 (step 78). Interface engine
30 causes a display of an indicator reflecting that informa-
tion being displayed as a result of the prior response may not
be current (step 80).

Later, mobile application 22 communicates yet another
request directed to web service 10 (step 82), and again,
status engine 28 intercepts or otherwise obtains that subse-
quent request and determines if the request can be commu-
nicated to web service 10 (step 84). Again, a data connection
is not available, but here status engine 28, in step 84, also
examines the request and identifies an exception indicator
and, as a result, passes the request to exception engine 32
(step 86). Exception engine 32 then takes an action that does
not include passing a prior response to mobile application 22
(step 88).

Conclusion:

FIGS. 1-3 aid in depicting the architecture, functionality,
and operation of various embodiments. In particular, FIGS.
2-3 depict various physical and logical components. Various
components are defined at least in part as programs or
programming. FEach such component, portion thereof, or
various combinations thereof may represent in whole or in
part a module, segment, or portion of code that comprises
one or more executable instructions to implement any speci-
fied logical function(s). Each such component or various
combinations thereof may represent a circuit or a number of
interconnected circuits to implement the specified logical
function(s).

Embodiments can be realized in any non-transitory com-
puter-readable media for use by or in connection with an
instruction execution system such as a computer/processor
based system or an ASIC (Application Specific Integrated
Circuit) or other system that can fetch or obtain the logic
from computer-readable media and execute the instructions
contained therein. “Computer-readable media” can be any
non-transitory media that can contain, store, or maintain
programs and data for use by or in connection with the
instruction execution system. Computer readable media can
comprise any one of many physical media such as, for
example, electronic, magnetic, optical, electromagnetic, or
semiconductor media. More specific examples of suitable
computer-readable media include, but are not limited to,
hard drives, solid state drives, random access memory
(RAM), read-only memory (ROM), erasable programmable
read-only memory, flash drives, solid state devices (SSDs),
and portable compact discs.

Although the flow and sequence diagrams of FIG. 4-5
show specific orders of execution, the orders of execution
may differ from that which is depicted. For example, the
order of execution of two or more blocks or arrows may be
scrambled relative to the order shown. Also, two or more
blocks shown in succession may be executed concurrently or
with partial concurrence. All such variations are within the
scope of the present invention.

The present invention has been shown and described with
reference to the foregoing exemplary embodiments. It is to
be understood, however, that other forms, details and

US 9,483,576 B2

7

embodiments may be made without departing from the spirit
and scope of the invention that is defined in the following
claims.
What is claimed is:
1. An offline application support system comprising a
non-transitory computer readable resource storing instruc-
tions that, when executed, cause a processing resource to:
record in a repository a plurality of request/response pairs
exchanged between the application and a web service,
the repository searchable using a current request from
the application to the web service as a key;

determine if a data connection exists to allow the current
request from the application to be communicated to the
web service;

upon a positive determination:

pass the current request to the web service; and

update the repository to include a request response pair
for the current request and its corresponding
response; and

upon a negative determination:

examine the current request for an exception indicator
indicating that no recorded request/response pair is
to be returned to the application, the exception
indicator being at least one of includes at least one of
a flag included in the request and a type of the
request;

if the examination does not identify the exception
indicator in the current request, identify a most
recent recorded request/response pair having a
request matching the current request and passing the
response from the identified pair to the application as
if the response from the identified pair were a
response to the current request; and

if the examination does identify the exception indicator
in the current request, pass the current request to an
exception handler rather than obtaining and passing
the response from the identified pair to the applica-
tion.

2. The system of claim 1, wherein the instructions that,
when executed, cause the processing resource to pass the
response from the identified pair to the application comprise
instructions that, when executed, cause the processing
resource to pass the prior response to the application as if the
prior response were a response from the current request
returned from the web service and cause a display that
indicates a possibility that information being presented by
the application is not current, the information corresponding
to the prior response.

3. The system of claim 1 wherein the instructions, when
executed, cause the processing resource to, upon a negative
determination, utilize the current request as a key to search
for a request response pair and, if a pair is not found, pass
the current request to the exception handler.

4. The system of claim 1, further comprising the process-
ing resource.

5. The system of claim 1, wherein the exception indicator
indicates that no recorded request/response pair is to be
returned in response to a HTTP POST operation.

6. The system of claim 1, wherein the offline application
support system is included in a mobile device.

7. A system comprising a status engine, a record engine,
and an exception engine wherein:

the status engine is to determine if a data connection exists

to allow a current application request to be communi-
cated from a mobile application to a web service and
upon a negative determination obtain a previously
recorded response to a prior request matching the

10

15

20

25

30

35

40

45

50

55

60

65

8

current request and passing the previously recorded
response to the mobile application as if it were a
response to the current request;

the record engine is to, following a positive determination

by the status engine, record the current request and its
corresponding response such that the status engine can
later return that response to a future request from the
mobile application; and

the exception engine is to take an action with response to

a current request that does not include passing a prior
response to the mobile application,

wherein the status engine is to, upon the negative deter-

mination, pass the current request to the exception
engine rather than obtain and pass the previously
recorded response to the mobile application if an
examination of the current request identifies an excep-
tion indicator, the exception indicator being at least one
of a flag included in the request and a type of the
request, the exception indicator indicating that no
recorded response is to be returned for the current
request,

wherein the status engine, the record engine, and the

exception engine each comprise at least one hardware
component,

wherein the record engine is to record request/response

pairs exchanged between the mobile application and
the web service in a repository searchable using the
current request from the mobile application to the web
service as a key, and

wherein the status engine is to obtain the previously

recorded response by using the current request as a key
for use in identifying a most recent request/response
pair in the repository having a request matching the
key.

8. The system of claim 7, comprising an interface engine
configured, upon the negative determination by the status
engine, to cause a display that indicates a possibility that
information being presented by the mobile application is not
current, the information corresponding to the prior response.

9. The system of claim 7, wherein the exception indicator
indicates that no recorded response is to be returned for a
HTTP POST operation.

10. The system of claim 7, wherein the at least one
hardware component includes at least one of a processor and
a memory.

11. The system of claim 7, wherein the status engine, the
record engine, the exception engine, and the mobile appli-
cation are included in a mobile device.

12. The system of claim 11, wherein the repository is
included in the mobile device.

13. An offline support method for a mobile application,
comprising:

maintaining a repository of request/response pairs

exchanged between a mobile application and a web
service, wherein the repository is searchable using a
current request from the mobile application to the web
service as a key;

upon a determination that a data connection exists to

allow the current request from the mobile application to
be communicated to the web service, updating the
repository to include a request response pair for the
current request and a response from the web service to
the current request; and

upon a determination that the data connection does not

exist to allow the current request from the mobile
application to be communicated to the web service:

US 9,483,576 B2

9

examining the current request for an exception indica-
tor indicating that no pair from the repository is to be
returned to the application, the exception indicator
being at least one a flag included in the current
request and a type of the current request;
if examining does not identify the exception indicator,
obtaining a prior response from a pair in the reposi-
tory, the pair including a past request matching the
current request, passing the prior response to the
mobile application as if the response from the iden-
tified pair were a response from the current request
returned from the web service; and
if examining does identify the exception indicator,
passing the current request to an exception handler
rather than obtaining and passing the prior response
to the mobile application.
14. The method of claim 13, wherein passing comprises
passing the prior response to the mobile application as if it

10

15

10

were a response from the current request returned from the
web service and causing a display that indicates a possibility
that information being presented by the mobile application
is not current, the information corresponding to the prior
response.

15. The method of claim 13, comprising causing a display
that indicates that information being presented by the mobile
application is current, the information corresponding to a
response to the current request received from the web
service.

16. The method of claim 13, wherein the exception
indicator indicates that no pair from the repository is to be
returned in response to a HTTP POST operation.

17. The method of claim 13, wherein the repository of
request/response pairs and the mobile application are
included in a mobile device.

#* #* #* #* #*

